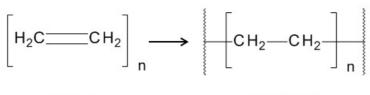


Polyéthylène PE

Présentation du polymère

Le PE est obtenu par polymérisation de l'éthylène. Il faut distinguer :

- le PE à basse densité (PEbd) ou haute pression ou ramifiés (densité 0,91 0,925)
- Le PE à haute densité (PEhd) ou basse pression ou linéaires (densité 0,94 0,965)


 $C'est \, un \, solide \, incolore, inodore, \, d'aspect \, cireux. \, II \, fond \, vers \, 120-140^{\circ}C. \, II \, devient \, cassant \, vers \, -25^{\circ}C. \, II \, n'est \, généralement \, pas \, plastifié.$

 Numéro CAS
 9002-88-4

 Famille du polymère
 Polyoléfines

Synthèse

Formule développée n°1

Ethylène

Polyéthylène

Caractéristiques

Propriétés physico-chimiques

[1,2]

 Température de fusion (°C)
 85-140

 Température de transition vitreuse (°C)
 - 110

Solubilité

Le PE est insoluble à température ambiante. Il est soluble à partir de 60-80 °C dans les solvants suivants :

- Hydrocarbures halogénés
- Hydrocrabures aromatiques

Additifs

Classe de l'additif	Nom de l'additif
Charges	Noir de carbone
Charges	Silice
Charges	Silicates
Charges	Carbonate de calcium
Colorants	Pigments organiques
Colorants	Pigments minéraux
Retardateur de flamme	Composé à base d'aluminium
Retardateur de flamme	Composé phosphoré
Retardateur de flamme	Oxyde d'antimoine

www.inrs.fr/plastiques Polyéthylène Page 1/5

Plastiques, Risque et Analyse ThermlQue

Retardateur de flamme	Paraffines chlorées
Divers	Réticulants
Divers	Agents porogènes
Divers	Anti-oxydants

Mise en oeuvre

Le polyéthylène est livré sous des formes commerciales diverses : granulés pour extrusion et injection, demi-produits (feuilles, plaques), mousses. Les copolymères d'éthylène sont utilisés purs ou en mélange avec des matières thermoplastiques ou des hydrocarbures paraffiniques. Ils servent notamment à la préparation de colles du type « *Hot-Melt* ».

Procédé	Gamme de température (°C)	Informations complémentaires
Extrusion	190-200 °C pour les PE Basse densité 160-180 °C pour les PE Haute densité	
Extrusion- soufflage	200 °C	Elle permet l'obtention de corps creux à des températures de l'ordre de 200 °C. Notamment les réservoirs à carburant pour l'automobile
Injection	170-230 °C pour les PE Basse densité 150-300 °C pour les PE Haute densité	Après ébardage et décarottage, les pièces sont utilisables sans usinage
Moulage		Un rotomoulage peut être réalisé avec du polyéthylène en poudre dans un moule creux qui tourne en tous sens pendant qu'on le chauffe.
Frittage	250 °C	Pour revêtir l'intérieur ou l'extérieur de tuyaux
Soudage	Température ambiante	Les tubes PE sont soudés par soudage miroir ou électro soudage. ou au contact pour les films. Les ultra-sons sont également utilisés.
Enduction	280-320 °C	Cette technique est surtout utilisée avec le polyéthylène basse densité, sur des supports lisses

Risques

Risques chimiques

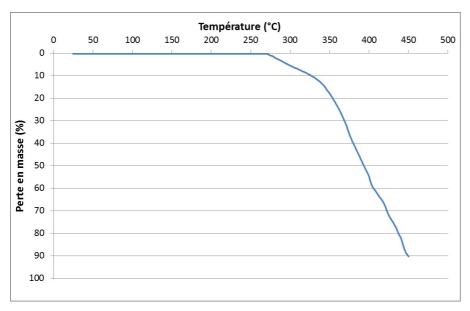
[3-8]

Risques spécifiques au polymère

Le polymère ne présente pas de risque toxicologique particulier à température ambiante à l'exception du danger habituel dû aux poussières inertes lorsqu'elle est manipulée sous forme pulvérulente.

Les adjuvants sont ajoutés en faible quantité, ce qui n'exclut pas les risques au moment de leur incorporation ou lors des travaux de finition.

Dégradation thermique : résultats expérimentaux


Protocole de dégradation thermique ¹

1 http://www.inrs.fr/dms/plastiques/DocumentCompagnonPlastiques/PLASTIQUES_DocCompagnon_6-1/Protocole%20DgtTh%20avril%202019.pdf

Thermogramme

<u>www.inrs.fr/plastiques</u> Polyéthylène Page 2 / 5

Le polymère se dégrade à partir de 274 °C.

A 450 °C, il est dégradé à 90 %.

Tableau des produits de dégradation thermique

Famille		Détails
Aldéhydes	190 °C	Acétaldéhyde, acrylaldéhyde, propanal
	200 °C	Acétaldéhyde
	220 °C	Acétaldéhyde
	240 °C	Acétaldéhyde
	450 °C	Formaldéhyde (2,8%), acétaldéhyde (1%), aldéhydes C3-C13
	Lien Fiche Toxicologique	FT-7 FT-120
	Lien Méthode METROPOL	M-4 M-66
Alcools	190 °C	Ethanol, ethoxypropanol
	200 °C	Ethanol, ethoxypropanol
	220 °C	
	240 °C	
	450 °C	Méthanol
	Lien Fiche Toxicologique	FT-48 FT-5
	Lien Méthode METROPOL	M-38 M-26
Cétones	190 °C	Acétone, méthyléthylcétone
	200 °C	Acétone
	220 °C	Acétone
	240 °C	Acétone, méthyléthylcétone
	450 °C	C3-C6, butyrolactone
	Lien Fiche Toxicologique	FT-3 FT-14 FT-247
	Lien Méthode METROPOL	M-37;M192

www.inrs.fr/plastiques Page 3 / 5

Plastiques, Risque et Analyse ThermlQue

		M-106; M-191 M-142
Acides	190 °C	Acide acétique
	200 °C	Acide acétique
	220 °C	Acide acétique
	240 °C	
	450 °C	Acide acétique, acide propanoïque
	Lien Fiche Toxicologique	FT-24
	Lien Méthode METROPOL	M-284; M-288; M-321; M-300
Hydrocarbures aromatiques	190 °C	
	200 °C	
	220 °C	
	240 °C	
	450 °C	Benzène (<1%)
	Lien Fiche Toxicologique	FT-49
	Lien Méthode METROPOL	M-40; M-237; M-243
Hydrocarbures saturés	190°C	C8-C16
	200 °C	C3-C12
	220 °C	
	240 °C	C5-C12
	450 °C	C3-C10
	Lien Fiche Toxicologique	
	Lien Méthode METROPOL	
Hydrocarbures insaturés	190 °C	C12, C14, C16
	200 °C	C10
	220 °C	
	240 °C	
	450 °C	C3-C10
	Lien Fiche Toxicologique	
	Lien Méthode METROPOL	
Autres	190 °C	
	200 °C	
	220 °C	
	240 °C	Tétrahydrofurane
	450 °C	Furane
	Lien Fiche Toxicologique	FT-42
	Lien Méthode METROPOL	M-44

Produits de dégradation décrits dans la bibliographie

Les antioxydants deviennent volatils aux températures élevées de transformation. Leur départ facilite l'oxydation de la résine avec cassure de la chaîne et émission des produits de décomposition cités dans le tableau ci-dessus.

Risques en cas d'incendie / explosion

Combustible	OLL

<u>www.inrs.fr/plastiques</u> Polyéthylène Page 4 / 5

Plastiques, Risque et Analyse ThermlQue

Pouvoir calorifique (Kcal/Kg)	11000
-------------------------------	-------

Descripitf:

Le polyéthylène brûle facilement. Les polyéthylènes expansés sont plus inflammables en raison de leur mauvaise conductivité thermique qui empêche la diffusion de la chaleur due à une élévation de la température en un point quelconque de la masse.

Le polyéthylène brûle en dégageant essentiellement de l'anhydride carbonique (FT-238) ², de l'oxyde de carbone toxique (FT-47) ³, des hydrocarbures aliphatiques (méthane et hydrocarbures insaturés légers).

Quand un feu de polyéthylène couve, il se forme aussi des aldéhydes et des acides gras volatils.

Risques asssociés aux additifs

6 additifs:

Noir de carbone :

Le noir de carbone pénètre dans l'organisme essentiellement par inhalation mais aussi par voies orale et cutanée. Après inhalation, il s'accumule dans le tractus respiratoire et s'élimine lentement par voie digestive.

FT-264

Silice:

La silice amorphe n'a pas d'effet spécifique sur la santé. En revanche la silice cristalline peut provoquer la silicose et joue également un rôle certain dans le développement de cancers pulmonaires.

Pigments minéraux :

Les pigments minéraux ont en général la même toxicité que le métal qu'ils contiennent. L'anhydride chromique peut-être à l'origine d'ulcérations de la peau et des muqueuses.

FT-1

Composé phosphoré:

Nocifs et irritants pour la peau et les muqueuses.

Oxyde d'antimoine :

Le trioxyde de diantimoine est principalement absorbé par voie pulmonaire et, très faiblement, par voie digestive. Il est largement distribué dans l'organisme puis lentement éliminé, essentiellement dans les selles et plus faiblement dans l'urine. Chez l'homme, il existe un passage transplacentaire et dans le lait maternel.

FT-198

Anti-oxydants:

 $Principalement\ ph\'enoliques\ encombr\'es\ et\ amines, ces\ compos\'es\ sont\ souvent\ irritants\ pour\ la\ peau\ ou\ sensibilisants.$

Bibliographie générale

- 1 | CARREGA M. Aide mémoire. Matières plastiques. Dunod 2 ed., 2009.247 p.
- 2 | TROTIGNON JP, VERDU J, DOBRACZYNSKI A, PIPERAUD M. Matières plastiques. Structures propriétés, mise en oeuvre, normalisation. Nathan 2 éd., 2006. 231 p.
- 3 | HILADO CJ. Flammability handbook for plactics. Westport (CO), Technomic Publishing Compagny, 1982. 191 p.
- 4 | Comportement au feu des matières plastiques. Face au risque. 1988, 241, mars, pp. 33-34.
- **5** | VOVELLE C, DELFAU JL. Combustion des plastiques . Techniques de l'Ingénieur, AM3170, 2007. 25 p.
- 6 | MERCIER J-P, MARECHAL E. Chimie des polymères. Synthèse, réactions, dégradations. Presses polytechniques et universitaires romandes, 1996. 466 p.
- 7 | LAFOND D, GARNIER R. Toxicité des produits de dégradation thermique des matières plastiques. Encyclopédie médico-chirurgicale. Toxicologie, pathologie professionnelle 16-541-C-10 Elsevier Masson, 2008 12p.
- 8 | MARCILLA A, BELTRAN MI, NAVARRO R. Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis. 2009, vol. 86, n° 1, pp. 14-21 14-21.

www.inrs.fr/plastiques Polyéthylène Page 5 / 5

²http://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_238

³ http://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_47