

Seconde vie des batteries

Projet RECORD

Mathilde Le Bihan RDC Environment

Notre mission

Nous contribuons à la prise de décision dans le sens du développement durable

Notre entreprise

Créée en 1992

Basée à Bruxelles, présence en France

Équipe de 20 ingénieurs et économistes

RDC Environment

Nos services

Analyse de cycle de vie

- Réalisation de plus de 300 études ACV dans divers secteurs
- Analyses de sensibilité poussées grâce à notre logiciel
 « Range LCA »
- Impliqué dans le développement du PEF/OEF

Outils d'évaluation environnementale

- Outils Web pour l'éco-conception et la communication interne et externe
- Faciles d'utilisation et accessibles aux non-experts
- Adapté à vos besoins et à vos produits / services
- Modèles conformes aux normes souhaitées

Economie circulaire

- Expertise technique, environnementale et économique
- Maîtrise de l'ensemble de la chaîne de valeur : production,
 consommation et gestion des déchets
- Évaluation des politiques publiques environnementales
- Accompagnement des éco-organismes

Évaluation de durabilité

- Intégration des impacts environnementaux, sociaux et économiques sur l'ensemble du cycle de vie
- Méthodes basées sur la monétarisation
- Identification et évaluation des externalités

Réseau coopératif de recherche sur les déchets et l'environnement

Accroitre les <u>connaissances appliquées</u> et le <u>partage d'expérience</u> autour des **produits en fin de vie**, des **déchets**, des **sols pollués** et de l'utilisation efficace des **ressources** dans une perspective d'**Economie Circulaire**

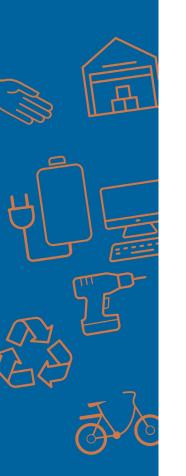
L'association RECORD est un réseau ouvert à toute organisation publique ou privée. Il permet la réalisation d'études et de recherches dans le cadre d'une coopération tripartite tout à fait originale entre industries, institutionnels et chercheurs. Cette coopération fait de RECORD un lieu privilégié d'échanges ainsi qu'un outil de veille technologique et scientifique.

Financement de projets (seul ou en partenariat)

Bibliographie - Etudes terrains (métrologie, essais, etc.) - Etats de l'art techniques - Benchmark UE/ règlementation ... **Programmes soutenus par l'ADEME**

Thématiques d'études et de recherche de RECORD

- Connaissance et caracté isation méthodes et outils (métrologie, connaissance des gisements, etc.)
- Développement des filières de recyclage et de valorisation (procédés, traitement des effluents, etc.)
- Evaluation des impacts et des risques sanitaires et environnementaux (amélioration des méthodes ER « S » et « E », santé des populations, santé des opérateurs, biodiversité)
- **Evaluation des dimensions économiques et sociales** (économie, droit réglementation, externalités, etc.)



Champ de l'étude

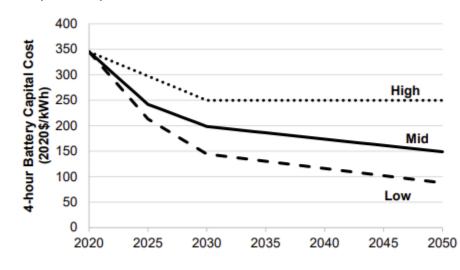
• Focus sur les batteries de mobilité légère et lourde

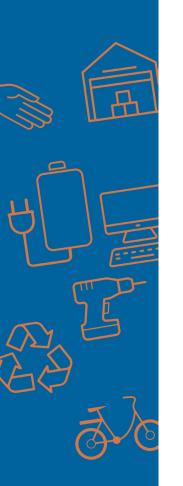
 Réemploi ou préparation à la réutilisation des batteries usagées

• Pour un nouvel usage, identique ou différent de l'usage initial

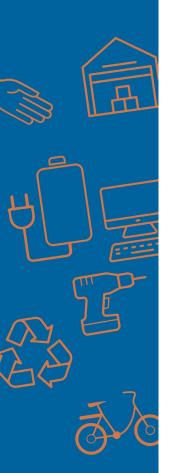
Contexte

- La seconde vie des batteries apparaît prometteuse
 - Hiérarchie des déchets
 - Gisement en croissance
 - Saturation court-terme du recyclage
 - Recyclage coûteux pour certaines technos (LFP)
- Mais de nombreux défis à relever
 - Décalage temporel du gisement
 - Compétitivité face au vierge
 - Compétitivité face au recyclage objectifs d'incorporation
 - Partenariats nécessaires pour l'accès à l'état de santé de la batterie
 - Normes et réglementation, notamment en rapport avec la sécurité



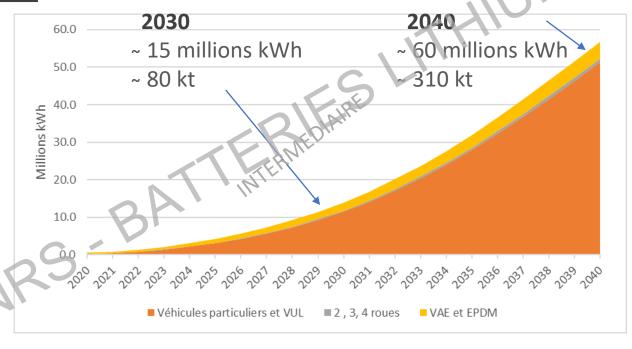

Figure ES-2. Battery cost projections for 4-hour lithium ion systems.

Source: NREL, Cost Projections for Utility-Scale Battery Storage: 2021 Update


Objectifs de l'étude

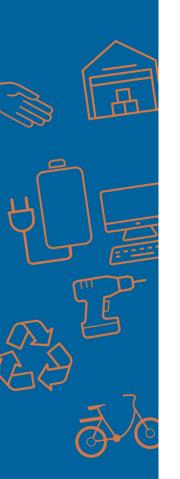
- Evaluer le gisement potentiel des batteries usagées qui seraient utilisables en seconde vie, en France et en Europe
- Réaliser un état de l'art technico-économique des diverses solutions possibles de seconde vie avec établissement des retours d'expérience d'opérations réalisées en France et en Europe
- Identifier les barrières à lever concernant la réutilisation de batteries en seconde vie et proposer des solutions

Etat des lieux réglementaire


- La Directive 2006/66/CE actuelle ne propose pas un encadrement adéquat
 - Pas d'obligation d'organisation d'une filière REP (obligation de reprise)
 - Pas de place prévue pour la seconde vie de la conception à la fin de vie
 - Responsabilités floues en cas de seconde vie (REP, sécurité)
- Le futur Règlement Batteries européen clarifie certains points
 - Obligation de filière REP (individuelle ou collective)
 - Les opérateurs préparant à la seconde vie seront des metteurs en marché -> REP, garanties concernant la sécurité
 - Les batteries usagées : déchets mais critères de SSD pour seconde vie
 - Informations obligatoires: marquage, lecture BMS, passeport batteries
- Mais d'autres resteront à développer
 - Normes sécurité mise en marché peu adaptées à la seconde vie

Gisement de batteries usagées

- Un gisement encore très limité mais qui devient majeur après 2030
- La part de la mobilité légère va diminuer : 54% en 2020, 10% en 2040

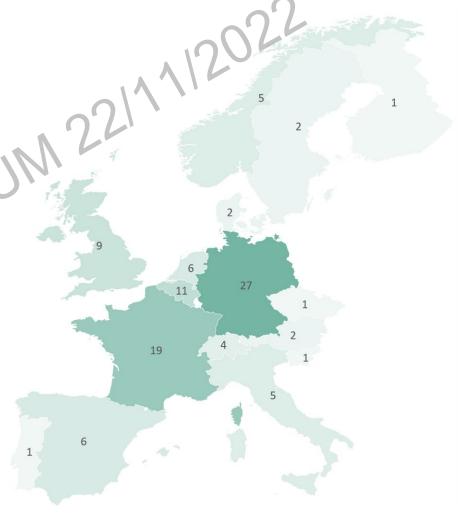

France

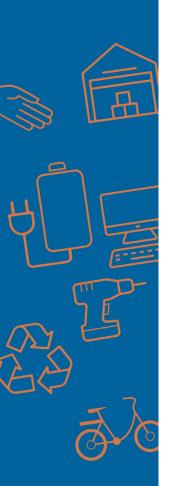
Europe

- 2030
 - ~55 millions kWh
 - ~280 kt
- 2040
 - ~300 millions kWh
 - ~1500 kt

Chiffres présentés à ce stade : sur base de la capacité neuve Potentiel de réutilisation de l'ordre de 70-80%, à affiner dans l'étude

Panorama des initiatives de seconde vie


• Plus de 80 initiatives recensées en Europe

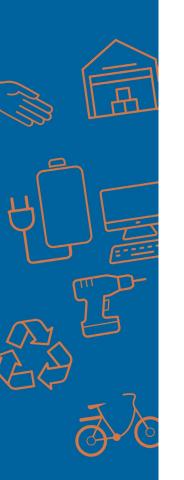

Mobilité légère

- Usage en mobilité légère ou comme batterie portable
- Petite échelle 200 à 800 W.h à quelques kWh
- Start-ups spécialisées ou réparateurs ou vendeurs de batteries

• Mobilité lourde

- Usage en SES et mobilité
- Plus grande échelle : 10-1000 kWh
- Entreprises spécialisées SES, installations spécifiques et partenariats stratégiques avec des constructeurs auto





Panorama des initiatives de seconde vie

- Une filière qui gagne en maturité
 - Conception de partenariats durables
 - Spécialisation de l'offre en fonction des usages de SES visés
 - Mobilité légère: Conception de batteries portables génériques en vue d'une offre commerciale
- Mais qui doit encore se stabiliser
 - Pas de marché de batteries usagées en fin de première vie
 - Certains partenariats ne sont que ponctuels
 - Certains acteurs se positionnent sur plusieurs types d'usages

Prochaines étapes – initiatives à approfondir

Initiatives	Caractéristiques clés 🖊 📗		
Seconde vie des batteries Kyburz	2,3 roues électriques ; Seconde et troisième vie ; Technologie et compétences internalisées		
Connected Energy	Stockage stationnaire ; Entreprise dédiée ; Partenariats à l'échelle européenne		
Projets CSV et ABR menés par Entech	Stockage stationnaire ; Conception de prototypes ; Association de packs de différents constructeurs		
Partenariat Vattenfall/BMW	Stockage stationnaire ; Partenariat énergéticien/constructeur		
xStorage par Eaton et Nissan	Stockage stationnaire résidentiel; Offre à l'échelle mondiale		

- Compréhension technique, économique et des partenariats
- Identification des freins et leviers
- Analyse transversale

Sécurité et seconde vie des batteries

- L'histoire de la batterie génère des risques incendie
- Pas de norme européenne pour la seconde vie
 - PGS-37(Pays-Bas) → comparabilité aux performances d'origine
- Conformité compromise aux normes produits neufs
 - Tests destructifs
 - Echantillon jugé représentatif -> pas le cas en seconde vie
- S'inspirer de la norme américaine UL 1974 (2018) Standard for evaluation for repurposing batteries
 - Date d'expiration pour les batteries → contestable
 - Tests **non-destructifs sur l'intrant** : inspection visuelle, accès à l'historique, mesures de routine
 - Tests sur la sortie, y compris destructifs : échantillon worstcase scenario → difficile à définir
 - Tests de vieillissement à mener en parallèle

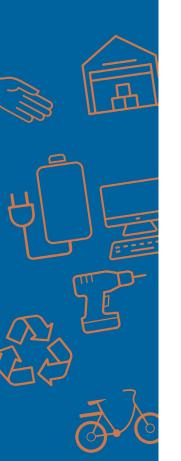
Sécurité et seconde vie des batteries

- Un protocole restant à valider:
 - Fiabilité des tests non destructifs pour donner une indication du SOH
 - · Représentativité des tests destructifs
 - Définition du périmètre d'un scénario d'utilisation
- Des BMS à améliorer localisation capteurs de température

Informations complémentaires

- Une synthèse publique sera disponible 21. Composition du COPIL:

Mathilde Le Bihan


Consultante senior 07.83.24.21.82

mathilde. lebihan@rdcenvironment.be

JOURNÉE TECHNIQUE INRS



Sécurité et gestion des déchets de batteries

- Des risques d'incendie et d'électrocution au niveau de la collecte, de l'enlèvement et du stockage (similaires au recyclage)
- Bonnes pratiques générales identifiées à l'étranger:
 - Contrôle d'accès au point de collecte
 - Sécurisation des batteries avant dépôt
 - · Collecte dans des fûts spécifiques pour la mobilité
 - Documents de gestion du risque (similaire INERIS)
 - Formation des centres VHU obligatoire (agrément) / financée par la filière REP
 - Transport ADR

Gisement de batteries usagées

- Estimation des ventes annuelles de véhicules à partir de projections du secteur et d'autres hypothèses
 - Données PFA Auto, FP2M, ACEM, Union Sport et Cycle
- Loi de casse (répartition des durées de vie)
 - 14-15 ans pour les véhicules électriques
- Estimation de la masse de batteries (poids moyen, densité énergétique batterie)
- Estimation de la capacité neuve (densité énergétique batterie)
- Extrapolation des données au niveau européen

Sécurité en cas de seconde vie

	Test	Risk	Non-destructive		Destructive
Aspect			All input	All output	Samples of output
Casing	Casing integrity (vis- ual)	Ageing proxy for fire	х	x	2
	Resistance to immer- sion	Fire / short-circuit		M	x
	Resistance to shock	Leakage			x
Battery (internal)	Past information from BMS	Ageing proxy for fire	х		
	Internal resistance	Ageing proxy for fire	x	х	
	Impedance	Ageing proxy for fire		x	
	Charge and discharge test (capacity)	Ageing proxy for fire & potential for second life	х		
	Self-discharge	Performance and fire		х	
	Overcurrent	Fire			х
	Overvoltage	Fire			x
	Over-charge/discharge	Fire			x
	Thermal resistance	Fire			х
	Insulation resistance	Electrocution			x
Perfor- mance	Cycling test	Life span (performance)			

p.20