MétroPol

Liste des substances utilisant cette analyse

Nom	Numéro CAS
N,N-Diméthylhydrazine;Hydrazine monohydratée;Hydrazine	57-14-7;7803-57-8;302-01-2

Préparation de l'analyse

Durée de conservation testée et validée pour les prélèvements _____ 14 jour(s)

Conditions de conservation testée et validée pour les prélèvements :

Conservation testée sur 3 jours et 14 jours

Séparation des plages ______ oui

Nombre d'étapes de préparation _______2

Commentaires sur les étapes :

1 ère étape extraction suivie d'une deuxième étape de dérivation

1 étape de préparation :

Etape de préparation n°

Séparation des plages ______oui

Solvant ou solution _____

EAU

Type de préparation _____ ■ Désorption

Volume _____ 5 mL

Temps de centrifugation et vitesse ______ 10 mir

Vitesse 4000 tours par minute

Commentaires:

prélever 2 mL et passer à la dérivation

Dérivation

 Moment de la dérivation
 lors de la préparation de l'échantillon

 Réactif
 ■ ALDHEYDE SALICYLIQUE

 Temps de dérivation
 15 mn

Nom du/des dérivé(s) formé(s) et numéro(s) CAS correspondants :

Nom du dérivé UDMH : Salicyaldéhyde-1,1-diméthylhydrazone Nom du dérivé Hydrazine : Salycylaldazine

Commentaires:

- Transférer, en flacons de 5 mL, des aliquotes de 2 mL des solutions de centrifugation. Ajouter
 25 µL d'une solution d'aldéhyde salicylique à 2 % dans l'acétonitrile et agiter quelques minutes.
- Laisser reposer 15 minutes à l'obscurité.
- Tamponner à pH 7 8 par addition d'1 mL d'une solution de borate de sodium (0,3 N). Chauffer au bain-marie ou à l'étuve à 70°C pendant 30 minutes au minimum.
- Laisser refroidir à température ambiante.

Faire l'analyse

Commentaires, conseils ou conditions particulières

Une filtration sur membrane (0,45 μm) est à proscrire car entrainant des pertes importantes.

Condition analytique n°

 $Les \ conditions \ analytiques \ utilisées \ lors \ du \ développement \ de \ la \ méthode \ sont \ fournies \ avec \ les \ données \ de \ validation.$

MétroPol

Technique analytique	■ CHROMATOGRAPHIE EN PHASE LIQUIDE
Injecteur	■ PASSEUR AUTOMATIQUE
Colonne	■ PHASE INVERSE C18
Détecteur	■ ULTRAVIOLET (UV)
Phase mobile	■ ACETONITRILE
	 ACIDE SULFURIQUE.
	■ EAU

Commentaires, conseils ou conditions particulières :

L'éluant est à optimiser en fonction du type de colonne choisie.

Etalonnage et expression des résultats

La méthode d'étalonnage indiquée est celle utilisée lors du développement. Elle n'a cependant pas de caractère obligatoire.

Méthodes d'étalonnage pour la quantification des polluants ¹

¹https://www.inrs.fr/dms/inrs/PDF/metropol-analyse-etalonnage.pdf

Principe d'étalonnage externe

Solvant de l'étalon Même solvant que celui des échantillons

Calcul de la concentration atmosphérique ²

Compléments:

²https://www.inrs.fr/dms/inrs/PDF/metropol-resultat-calcul-concentration.pdf