

Acide acétique M-300

 Prélèvement : Actif sur Tube de Florisil ®

 Analyse : électrophorèse capillaire
 Validation non disponible

 Données de validation
 M-300

 Numéro de la méthode
 M-300

 Ancien numéro de fiche
 045

Substances

Informations générales

Nom	Fiche Toxicologique		
Acide acétique	FT Acide acétique		

Acide acétique 64-19-7 C ₂ H ₄ O ₂ 60,06 1,049 Acide éthanoïque	Nom	Numéro CAS	Formule Chimique	Masse molaire	densite (g/cm³)	Synonymes
	Acide acétique	64-19-7	C ₂ H ₄ O ₂	60,06	1,049	Acide éthanoïque

Substance
Acide acétique

Famille de substances

ACIDES CARBOXYLIQUES ALIPHATIQUES

Principe de prélèvement et d'analyse

Etat physique	Gaz et vapeurs
Type de prélèvements	Actif
Principe général et mise en œuvre pratique du prélèven	nent ¹
¹ https://www.inrs.fr/dms/inrs/PDF/metropol-prelevement-pri	ncipe/metropol-prelevement-principe.pdf
Nom du dispositif	Tube de Florisil ®
Technique analytique	ELECTROPHORESE CAPILLAIRE
Injecteur	PASSEUR AUTOMATIQUE

Domaine d'application

Liste des réactifs

- ACIDE BORIQUE
- CHROMATE DE SODIUM TETRAHYDRATE
- EAU
- GLUCONATE DE SODIUM
- MODIFICATEUR DE FLUX ELECTROOSMOTIQUE
- SOLUTION ETALON 1g/L

Consignes de sécurité pour les manipulations en laboratoire ²

²http://www.inrs.fr/media.html?refINRS=ED%20953

MétroPol

Méthode de prélèvement

Dispositifs de prélèvement actif pour le prélèvement de gaz ou vapeurs ³

 $^3 https://www.inrs.fr/dms/inrs/PDF/metropol-prelevement-gaz-vapeur-actif/metropol-prelevement-gaz-vapeur-actif.pdf$

Nombre d'éléments (dispositifs) composant le dispositif en série	1
Dispositif de prélèvement	
Type de dispositif	■ TUBE 50 mm diam 8 mm
Support ou substrat de collecte	■ SILICATE DE MAGNESIUM (FLORISIL®)
Quantité de support dans la plage de mesure (mg)	400
Quantité de support dans la plage de garde (mg)	200
Préparation du substrat : Les deux plages de Florisil [®] (30-60 mesh) sont mainte	enues par deux tampons de laine de verre.
(g F	

 Débit (L/min)
 1

 15 minutes (VLEP-CT possible dans ces conditions)
 oui

Pompe de prélèvement

■ Pompe à débit de 1 à 3 L/min

Préparation des dispositifs de prélèvement en vue d'une intervention en entreprise ⁴

Méthode d'analyse

Principe général de l'analyse en laboratoire ⁵

Préparation de l'analyse

 Durée de conservation testée et validée pour les prélèvements

 prélèvements
 21 jour(s)

 Conditions de conservation testée et validée pour les prélèvements:

 A l'abri de la lumière et à 4°C.

 Séparation des plages
 oui

 Nombre d'étapes de préparation
 1

1 étape de préparation :

Etape de préparation n° 1

 $^{^4} https://www.inrs.fr/dms/inrs/PDF/metropol-intervention-preparation/metropol-intervention-preparation.pdf$

 $^{^{5}} https://www.inrs.fr/dms/inrs/PDF/metropol-analyse-principe/metropol-analyse-principe.pdf$

MétroPol

Séparation des plages	oui	
Solvant ou solution	■ EAU	
Type de préparation	■ Désorption	
Volume	5 mL	
Ultrasons	5 min	

Autres conditions de préparation :

- Après prélèvement, transférer séparément chaque plage de Florisil [®] dans des flacons de désorption.
- Ajouter 5 mL d'eau. Agiter aux ultrasons environ 5 minutes, filtrer sur membrane (0,45 μm) et analyser.

Filtration:

sur membrane 0,45 μ m

Commentaires:

Traiter les blancs de terrain et les blancs de laboratoire de la même façon.

1 condition analytique:

Condition analytique n° 1

Les conditions analytiques utilisées lors du développement de la méthode sont fournies avec les données de validation.

Technique analytique	•	ELECTROPHORESE CAPILLAIRE
Injecteur	-	PASSEUR AUTOMATIQUE
Phase mobile	•	ELECTROLYTE

Commentaires, conseils ou conditions particulières :

Préparation d'une solution mère de chromate à 0,1 M

Dans une fiole jaugée de 100 mL, placer 50 mL d'eau ultra-pure et 2,34 g de chromate de sodium tétrahydraté. Jauger et agiter énergiquement.

Cette solution mère peut être conservée pendant un an dans un récipient en verre hermétiquement fermé.

Préparation de l'électrolyte de travail

Dans une fiole jaugée de 200 mL :

- Verser 9,2 mL de solution mère de chromate.
- Ajouter 5 mL de modificateur de flux électroosmotique.
- Ajouter environ 100 mL d'eau ultra-pure.
- Verser, en agitant la fiole, 2 mL d'acide gluconique.
- Compléter à 200 mL avec de l'eau ultra-pure (pH obtenu environ 8).
- Dégazer sous vide.

Cet électrolyte peut être conservé et réutilisé plusieurs jours dans un flacon bouché.

Remarque:

Pour le dosage de l'acétate, il est préférable d'utiliser de l'acide gluconique plutôt que l'acide borique qui génère un pic interférent. L'ajout de l'acide gluconique sera effectué avec mesure du pH pour ne pas descendre en dessous de 8 (risque de précipitation).

Préparation de l'acide gluconique 1 M : solubiliser 5 g de gluconate de sodium dans 25 mL d'eau ultra-pure. Ajouter en excès de la résine H + (préalablement lavée) jusqu'à un pH stabilisé à environ 1,5 afin de transformer le sel en acide gluconique.

Etalonnage et expression des résultats

La méthode d'étalonnage indiquée est celle utilisée lors du développement. Elle n'a cependant pas de caractère obligatoire.

Méthodes d'étalonnage pour la quantification des polluants ⁶

⁶ https://www.inrs.fr/dms/inrs/PDF/metropol-analyse-etalonnage.pdf

MétroPol

Principe d'étalonnage	externe
Solvant de l'étalon	■ Même solvant que celui des échantillons

Calcul de la concentration atmosphérique ⁷

Compléments:

Remarques:

 Si la quantité de polluant sur la deuxième plage M₂ > 5 % de la première plage M₁, le prélèvement est considéré comme non représentatif de l'exposition.

Interférences

Les chlorures d'acides sont hydrolysés en acides carboxyliques et acides hydrochloriques sur les supports de collecte, dans l'air humide, et en solution. Par conséquent, la méthode de prélèvement peut surestimer la concentration en acide carboxylique dans l'air.

Contacts

metropol@inrs.fr

Bibliographie

Historique

version	date	Modification(s) faisant l'objet de la nouvelle version
045	11/02/2003	Création et mises à jour
M300/V01	Janvier 2016	Mise en ligne Substance unique Analyses par électrophorèse capillaire

 $^{^7} https://www.inrs.fr/dms/inrs/PDF/metropol-resultat-calcul-concentration.pdf$